HIV Infection and Epidemiology: Can There Be a Cure?

Dr. Nedwidek

The Viral Life Cycle

- A typical virus (DNA or RNA + protein) enters the host cell, makes more of itself, and exits.
- There are two major types of viruses: bacteriophage (left) infect prokaryotes, and other virions infect eukaryotes (animal or plant cells).

The Platonic Solids and Viruses

- Plato said that each of these 5 solids represented an "element" on earth: Tetrahedron for Fire, Cube for Earth, Octahedron for Air, Dodecahedron for the Cosmos, Icosahedron for Water.
- Most viruses are icosahedral because it is the most efficient crystalline arrangement for a small unit that contains enough genetic material to reproduce. It is also easily transported in water-based fluids.

DNA & RNA: Examples of Viruses

- DNA virus bacteriophage P22 infects E. coli (Left);
- Mostly RNA virions that infect animals and plants (Right): in humans: cold virus, herpes virus (a DNA virus), polio virus, influenza virus, HIV (a retrovirus); in plants (Far rt.): Tobacco Mosaic Rod Virus.

Human Immunodeficiency Virus (HIV): The Cause of AIDS

The structure of HIV is at left, and we see it infecting a human cell at right; it will ultimately cause Acquired Immune Deficiency Syndrome (AIDS).

Step 1: HIV targets T-cells to infect.

Step 2: HIVgp120 binds T-cell CD4.

Step 3: HIV inserts RNA(black).

Step 4: Reverse Transcriptase copies RNA to DNA (blue).

Step 5: DNA enters nucleus; makes mRNA to encode HIV.

Step 6: mRNA enters cytoplasm to make polypeptides (colors).

Step 7: HIV protease (green) cuts and creates viral proteins.

Step 8: HIV prepares to pinch out and break away from cell.

Step 9: HIV pinches out of cell.

Step 10: Mature HIV emerges and infects other T-helper cells.

HIV and T-cells: Immunity Explained

Cytotoxic T Lymphocytes (CTL's) destroy invading microbes.

- Once the HIV virus enters the body, it heads for the lymphoid tissues, where it finds T-helper cells via binding CD4 and kills them: HIV is the only known human retrovirus that targets immune cells specifically. If helper T's die then killer T's cannot be made and do their job (see left).
- The newly replicated virions will infect other T-helper cells and cause the person's T-cell count to slowly dwindle by removing both the helper T cells and ultimately the CTL's that talk to them. The lack of T-helper cells compromises human immunity by preventing the removal of other harmful antigens with antibodies made by B cells (see left).
- No one dies from AIDS or HIV specifically. Instead, an AIDS-infected person dies from secondary infections, because his or her immune system has been dissipated. The loss of T-cells is the key to the loss of immunity.

Recent Trends in HIV/AIDS Infection

Epidemiology of HIV/AIDS in the United States

HIV InSite Knowledge Base Chapter Published March 2003

Dennis H. Osmond, PhD, University of California San Francisco http://hivinsite.ucsf.edu/InSite?page=kb-01-03

Table 2. Distributions of U.S. AIDS Cases* by Transmission Exposure Group over Time

	Percent in Exposure Group		
Transmission Exposure Group	1983	1992	2001
MSM	71%	52%	40%
IDU	17%	25%	26%
MSM IDU	NA	5%	4%
Heterosexual contact#	5%	9%	28%
Blood/blood product recipient	2%	1%	0%
No risk identified/other	6%	6%	2%

Key

IDU: Injecting drug user

MSM: Men who have sex with men

NA: Not available

- Adult incident cases in 2001 adjusted for reporting delays and redistribution of cases initially reported with no risk identified (31% of reports in 2001).
- # Includes "Born out of United States," formerly a separate group in 1983 (4%).

- Heterosexual incidences of AIDS have *INCREASED* in the last 20 years, while other modes of transmission have leveled or decreased.
- Creates an epidemic.
- Why?
- Lack of Public Awareness.

HIV Transmission by Heterosexual Contact: a Geometric Expansion

Evolutionary Adaptations Evade an Epidemic: Descendants of Plague Survivors Resist HIV

- CCR5 co-receptor enables certain microbes to invade immune cells by binding CD4 on helper T surface.
- Yersinia pestis bacterium causes Bubonic plague (Plague **Epidemic** of 1300: at left) by targeting T immune cells via CCR5.
- People missing CCR5 are resistant to plague and to HIV.
- We can treat plague today with antibiotics, but HIV is still untreatable (Current Worldwide HIV **Epidemic**: at left) because it evades the immune system and replicates rapidly under cover of the host cell.

Can There Be a Vaccine?

- Largest obstacles are financial and biological.
- Rapid mutation rates/different strains are a huge problem.
- Mechanism of HIV infection, which targets and depletes the immune system directly, is a huge hurdle.
- International AIDS Vaccine Initiative (IAVI) started trials in India on vaccine tgAAC09: targets reverse transcriptase and HIV gag & pro proteins in the most prevalent HIV subtype C.

Conclusions

- HIV belongs to a family of retroviruses that target human immune cells.
- HIV is unique in that it kills by weakening the immune system so secondary infection occurs.
- Heterosexual contact is a growing mode of HIV/ AIDS spread creating epidemics in society.
- Descendants of plague survivors (evolved to evade the 1300 epidemic) have immunity to HIV, which has a similar mechanism of infection to the plague.
- There is no simple HIV vaccine due to this virus being under cover of the human host cells and depleting the immune system.

Acknowledgements

IMAGES and Content Courtesy of:

- http://science.howstuffworks.com/virus-human.htm/printable
- http://www.enchantedlearning.com/math/geometry/solids/
- http://www.tulane.edu/~dmsander/WWW/335/335Structure.html
- http://www.rkm.com.au/VIRUS/BACTERIOPHAGE/phage-p22-virion.html
- http://www.rkm.com.au/VIRUS/Influenza/flu-structure.html
- http://web.uct.ac.za/depts/mmi/stannard/virarch.html
- http://health.howstuffworks.com/aids.htm
- http://health.howstuffworks.com/aids4.htm
- http://health.howstuffworks.com/framed.htm?parent=immune-system.htm&url=http://www.niaid.nih.gov/final/immun/immun.htm
- http://www.biology.arizona.edu/immunology/tutorials/AIDS/response.html
- http://hivinsite.ucsf.edu/InSite-KB-ref.jsp?page=kb-01-03&ref=kb-01-03-tb-02&no=2
- http://plagueyersiniapestis.homestead.com/YERSINIAPESTIS.HTML
- http://www.factmonster.com/ipka/A0762277.html
- http://www.iavi.org/viewfile.cfm?fid=7574
- http://www.iavi.org/viewpage.cfm?aid=100