5/28->

Aim: What are the genetic requirements for species stability and variation?

Recall that Hardy-Weinberg Equilibrium is described by the equation representing allele frequencies for allele p and allele q: $p^2 + 2pq + q^2 = 1$.

Conditions required for Hardy Weinberg equilibrium:

- --no net mutations or allele frequency changes
- --no individual enter/immigrate or leave/emigrate from population
- --population is infinitely large; small populations can bottleneck
- --individuals mate at random
- --selection does not occur (b/c selection perturbs the equilibrium)

Disruption of Hardy-Weinberg equilibrium occurs when:

- --mutation
- --migration
- -- genetic drift/adaptive radiation
- --natural selection (stabilizing, directional/1 extreme, disruptive/2 extremes, sexual prefs) Hardy-Weinberg equilibrium can only hold (sort of) in cases where there is heterozygote advantage, such as sickle cell

Species emerge due to:

- --Morphological (Biological) differences and speciation
- --geographical isolation (physical barriers)
- --reproductive isolation (breeding barriers)
- --punctuated equilibrium/non-gradual spurts (modern concept that disagrees w/gradual)

Molecular evolution and cladograms

Cladistics uses certain features of organisms to establish evolutionary relationships AA p 351 and towle 346: cladograms are not on exam

remember KPCOFGS (kingdom, phylum, class, order, family, genus, species)

molecular evidence/ basic structural similarities

- --biochem and genetics are similar
- -- DNA and RNA are similar going way back
- --all life uses same amino acids/universal code
- --organisms have similarities at level of protein (ie humans and mice)
- --proteins evolve to do similar functions with subunits